Как подключить однофазный двигатель

Схемы подключения однофазных асинхронных электродвигателей

Если в однофазных электродвигателях была бы только одна обмотка в статоре, тогда внутри него электромагнитное поле было бы пульсирующим, а не вращающимся. И запуск произошел бы только после раскручивания вала рукой. Поэтому для самостоятельного запуска асинхронных двигателей добавляется вспомогательная обмотка или пусковая, в которой фаза при помощи конденсатора или индуктивности оказывается сдвинутой на 90 градусов. Пусковая обмотка и толкает ротор электродвигателя в момент включения. Основные схемы включения изображены на рисунке.

Первые две схемы рассчитаны на подключение пусковой обмотки на время запуска мотора, но не более 3 секунд по продолжительности. Для этого используется реле или пусковая кнопка, которую необходимо нажать и удерживать пока не запустится мотор.

Пусковая обмотка может подключаться через конденсатор, или в очень редких случаях через сопротивление. В последнем случае обмотка должна быть намотана по бифилярной технологии, т.е сопротивление является частью обмотки. Оно увеличивается в ней за счет длины провода, но при этом индуктивность катушки не меняется.

В третьей самой распространенной схеме конденсатор постоянно включен к сети при работе электродвигателя, а не только на время его запуска.

Что бы определить какие провода идут на каждую из обмоток, сначала вызваниваем их по парам, а затем меряем сопротивление каждой по этой инструкции. У пусковой обмотки сопротивление всегда будет больше (обычно около 30 Ом), чем у рабочей обмотки (чаще всего в районе 10-13 Ом).

Подбирать конденсатор необходимо по потребляемому току мотором, например для I = 1.4 А потребуется конденсатор емкостью 6 мкФ.

Особенности подключения

Как было сказано выше, не каждый частотный преобразователь может работать с однофазным двигателем, поскольку при его подключении третья (неподключенная) фаза фактически будет в обрыве, что вызовет ошибку. Поэтому необходимо внимательно ознакомиться с документацией к ПЧ — производитель должен явно указать, что имеется возможность подключения и работы однофазной нагрузки.

Поскольку однофазный двигатель содержит конденсатор, при изменении рабочей частоты не удастся обеспечить нужный сдвиг фаз, и двигатель на пониженных частотах (менее 30 Гц) будет перегреваться. Это следует учитывать при выборе диапазона рабочих частот и способа охлаждения привода.

При однофазном подключении двигателя оперативный реверс через панель управления или настройки ПЧ невозможен. Поменять направление вращения можно, изменив схему подключения обмоток внутри двигателя.

Это интересно: Электросчетчик отключается сам по себе: в чем причина

Схемы подключения

 Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Схема подключения пускового конденсатора

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Соединения, центробежный выключатель на валу ротора

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Некоторые элементы

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

Варианты схемы подключения конденсаторов

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

Вариант 3: смена пусковой обмотки на рабочую, и наоборот

Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечаются коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

В этом случае поступают так:

Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

Важно понимать

Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

Источник

Подключение однофазного электродвигателя: использование магнитного пускателя

Но есть другой путь — подключение однофазного электродвигателя как генератора для получения трехфазного напряжения.

В качестве кратковременного переключателя ставят кнопки с группой контактов или реле. По схеме, изображенной на рисунке 2, соединения исполнялись без нейтрали.


Функция центробежного выключателя состоит в отключении пусковой фазы, когда ротор набирает номинальную скорость. Помните, что при подключении коллекторного электрического двигателя без блока электроники, он будет работать только на максимальных оборотах, а при запуске будет сильный рывок, большой пусковой ток, искрение на коллекторе. В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Следовательно, раз он подключается к сети , все конденсаторы, задействованные в схеме, должны быть не менее чем на В. Магнитное поле основной обмотки поддерживает вращение длительное время.

К примеру, для изготовления наждака или самодельного сверлильного аппарата. Использовать необходимо только конденсаторы, которые идут в комплекте поставки. Как рассчитать емкость Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в В, зависит от самой схемы

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на В


Магнитное поле основной обмотки поддерживает вращение длительное время. Решение — установка 3-х полюсного переключателя. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой. Это связано с тем, что при включении в сеть только рабочей обмотки С1-С2 у однофазного конденсаторного двигателя возникнет пульсирующее магнитное поле, а не вращающееся, то есть он не запустится. С каждым из сетевых проводов необходимо подключить дроссели для исключения помех.

В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем. Это и будет, один из сетевых проводов. Наиболее удобным является магнитный пускатель с управлением от в переменного тока. Все емкости, которые включаются в схему, должны быть однотипными.

Если после этого двигатель окажется горячим, то: Возможно, подшипники загрязнились, зажались или просто износились. Идея применения пускового конденсатора состоит в его включении в цепь лишь в момент запуска мотора. Станках для обработки сырья и т. Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем

Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств

Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки

Watch this video on YouTube

Что такое частотный преобразователь, основные виды и какой принцип работы

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Схема работы устройства плавного пуска, его назначение и конструкция

Устройство, виды и принцип действия асинхронных электродвигателей

Как подключить однофазный электродвигатель — схема с конденсатором

Проверка электродвигателей разного вида с помощью мультиметра

Подключение однофазного асинхронного двигателя

Для разгона асинхронного двигателя требуется создать вращающееся магнитное поле. С этим легко справляется трехфазный источник питания, где фазы сдвинуты друг относительно друга на 120 градусов. Но если речь идет о том, как подключить однофазный электродвигатель, то встает проблема: без сдвига фаз вал не начнет вращаться.

Внутри однофазного асинхронного мотора располагаются две обмотки: пусковая и рабочая. Если обеспечить сдвиг фаз в них, то магнитное поле станет вращающимся. А это главное условие для запуска электродвигателя. Сдвигать фазы можно путем добавочного сопротивления (резистора) или индуктивной катушки. Но чаще всего используют емкости – пусковой и/или рабочий конденсаторы.

С пусковой емкостью

В большинстве случаев схема включает в себя только пусковой конденсатор. Он активен только во время запуска мотора. Поэтому способ хорош, когда пуск обещает быть тяжелым, в противном случае вал не сможет разгоняться из-за небольшого начального момента. После разгона пусковой конденсатор отключается, и работа продолжается без него.

Схема подключения двигателя со вспомогательной емкостью представлена на рисунке выше. Для ее реализации вам потребуется реле или, как минимум, одна кнопка, которую вы будете зажимать на 3 секунды во время запуска мотора в ход. Вспомогательный конденсатор вместе со вспомогательной обмоткой включаются в цепь лишь на некоторое время.

Такая схема обеспечивает оптимальный начальный крутящий момент, если имеют место незначительные броски переменного тока во время пуска. Но есть и недостаток – при работе в номинальном режиме технические характеристики падают. Это обусловлено формой магнитного поля рабочей обмотки: оно у нее овальное, а не круговое.

С рабочей емкостью

Если пуск легкий, а работа тяжелая, то вместо пускового конденсатора понадобится рабочий. Схема подключения показана ниже. Особенность заключается в том, что рабочая емкость вместе с рабочей обмоткой включена в цепь постоянно.

Схема обеспечивает хорошие характеристики при работе в номинальном режиме.

С обоими конденсаторами

Компромиссное решение – использование вспомогательной и рабочей емкости одновременно. Этот способ идеален, если двигатель переменного тока пускается в ход уже с нагрузкой, и сама работа тяжела для него. Посмотрите, схема ниже – это словно две схемы (с рабочей и вспомогательной емкостью), наложенные друг на друга. При запуске на несколько секунд будет включаться пусковой механизм, а второй накопитель будет активен все время: от пуска до завершения работы.

Расчет емкостей

Наибольшую сложность для начинающих представляет расчет емкости конденсаторов. Профессионалы подбирают их опытным путем, прислушиваясь к мотору во время запуска и работы. Так они определяют, подходит накопитель, или нужно поискать другой. Но с небольшой погрешностью в большинстве случаев емкость можно рассчитать так:

  • Для рабочего накопителя: 0,7-0,8 мкФ на 1000 Ватт мощности электрического двигателя;
  • Для пускового конденсатора: больше в 2,5 раза.

Пример: у вас асинхронный однофазный электродвигатель на 2 кВт. Это 2000 Ватт. Значит, при подключении с рабочей емкостью нужно запастись накопителем 1,4-1,6 мкФ. Для пусковой потребуется 3,5-4 мкФ.

Пуск однофазного двигателя вспомогательной фазой

Благодаря применяемым способам, удаётся вводить однофазные аппараты в нормальный режим эксплуатации. Рассмотрим существующие и часто применяемые варианты запуска однофазных электромоторов, дабы использовать при необходимости.

Структурное построение электрической основы двигателя, в данном случае, отмечается наличием на статорном кольце двух обмоток (основной и второстепенной), геометрически смещённых на 90°.

Когда происходит включение однофазного мотора, ток (Т1) протекает по основной обмотке. Поскольку исполнение катушек статора разное, в контуре второстепенной обмотки циркулирует ток (Т2), более слабый и заметно сдвинутый на ф/2.

Магнитные поля, генерируемые токами (Т1) и (Т2), сдвинуты по фазе относительно друг друга. Это смещение способствует образованию магнитного поля вращения, достаточно сильного, чтобы однофазный электродвигатель запустился в работу, правда, без учёта нагрузки.

Схема пуска однофазного мотора: 1 — второстепенная фаза; 2 — основная фаза; 3 — центробежная муфта сцепления; L1, L2 — линия питающего напряжения

Как только вал двигателя достигнет 80% номинального значения скорости вращения, вспомогательная фаза отключается центробежной муфтой сцепления или остаётся поддерживаемой в рабочем состоянии.

Таким образом, статор однофазного электродвигателя фактически представляет двухфазную организацию, как в режиме запуска, так и в рабочем режиме.

Соединения фазы допустимо инвертировать, получая таким способом изменение направления вращения. Поскольку значение начального крутящего момента низкое, рекомендуется поднимать этот параметр, увеличением смещения между полями катушек.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

  • Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

{SOURCE}

Трехфазный двигатель в однофазной сети без конденсаторов: схема и описание подключения

Трёхфазный асинхронный двигатель можно запускать в однофазной сети, без подключения конденсаторов, а с использованием самодельного пускового электронного устройства. Схема его очень проста: на двух тиристорах, с тиристорными ключами и транзисторным управлением.

Преимущество предлагаемого пускового устройства в том, что значительно уменьшается потеря мощности двигателя. При пуске трехфазного двигателя 220 В помощью конденсатора, потеря мощности составляет минимум 30%, а может достигать 50%. Использование этого пускового устройства снижает потерю мощности до 3%, максимум составит 5%.

Схема пускового устройства для трёхфазного двигателя.

В схеме можно использовать любые тиристоры, ток которых не менее 10 А. Диоды 231, также 10-амперные. Примечание: у автора в схеме установлены диоды 233, что не имеет значения (только они идут по напряжению 500 В) −поставить можно любые диоды, которые имеют ток 10 А и удерживают более 250 В. Устройство компактно. Автор схемы собрал резисторы просто наборами, чтобы не тратить время на подборку резисторов по номиналу. Теплоотвод не требуется. Установлен конденсатор, стабилитрон, два диода 105. Схема получилась очень простая и эффективная в работе.

Пусковое устройство подключается к двигателю вместо конденсатора.

Подключенный к устройству резистор, позволяет регулировать обороты двигателя. Устройство также можно включить на реверс.

С данным пусковым устройством двигатель запускается мгновенно и работает без каких-либо проблем. Такую схему можно использовать практически на любом двигателе мощностью до 3 кВт.

В итоге при подключении двигатель стартует на своей максимальной мощности и практически без ее потери в отличие от стандартной схемы с использованием конденсатора.


Работа этого пускового устройства показана в этом видео:

Популярные самоделки на нашем сайте

  • Отрезной станок по металлу своими руками: подробное…
  • Ветрогенератор своими руками: фото и описание изготовления
  • Стельки с подогревом своими руками (20 фото + описание)
  • Печка щепочница складная: чертежи, схема сборки
  • Профилегиб своими руками: фото и описание самоделки
  • Самокат с мотором своими руками: фото, описание
  • Печь длительного горения своими руками: фото и…
  • Кран гусь своими руками: чертежи, фото и описание
  • Заточной станок своими руками: фото и описание
  • Самодельная печь из полена: 17 фото и описание
  • Мотоблок на газу: подробное описание установки газа…
  • Самодельный компрессор из холодильника: схема, описание

Способы подключения мотора

А теперь давайте рассмотрим несколько способов подключений:

  • конденсаторный способ;
  • частотный способ;
  • фазовое управление с помощью симистора;

Какой из способов лучше всего? Знаете, всё зависит от задачи, которую нужно решить… А так на вкус и цвет, сами знаете…

Если вы мало знакомы с преобразователем частоты, можете ознакомиться в статье «Чего вы не знаете о преобразователе частоты?»

Конденсаторный способ подключений

Бюджетное подключение трехфазных моторов к однофазной сети. Просто цепляем конденсатор последовательно в цепи обмотки и превращаем аппарат из трехфазного в однофазный. Вот схема:

Сп — пусковой конденсатор, а Ср — рабочий конденсатор. Как подбирать ёмкость в этом случае я расписывать не буду. В просторах интернета есть полно информации по этому поводу.

Фазовое управление с помощью симистора

Это один из самый старых способов управления. Две обмотки двигателя подключаются параллельно, одна из них с конденсатором. К точкам обмоток соединяем симисторный регулятор. Их актуальность, по-моему мнению, ещё не пропала. Лучше всего использовать для не тяжёлых нагрузок (вентиляторы, насосы).

На выходе устройства формируется напряжение сетевой частоты 50 Гц и настраивается среднеквадратичное число. Таким образом мы меняем время открытого состояния симистора за период следования напряжения. Единственный недостаток: момент на валу падает относительно снижения напряжения. Вот вам пример Autonics SPK1:

Входы для регулировки скорости универсальные. Сюда можно подключить и потенциометр 1 кОм, и датчик с токовым сигналом 4-20 мА, и напряжение 0-5 В.

Частотный способ

О популярности преобразователя частоты нет смысла говорить. Так как это устройство давно известно всем. Частотный способ является основным в нашем 21 веке. Скорость регулируется с помощью ШИМ-модуляции. Достаточно сложный девайс, требующий отдельной статьи. По входному напряжению существуют как и 380 В, так и 220В. Но что же получается по выходу?

На рынке есть готовые варианты и на однофазный, и на трёхфазный электродвигатель. Просто нужно подобрать схемное решение.

Но, бывают случаи когда ПЧ с однофазным выходом не по карману. Или у вас на полке лежит трёхфазный ПЧ. Давайте рассмотрим вариант подключения мотора к преобразователю частоты.

Общие правила

Данное значение присутствует в маркировке, чаще всего в двух показателях верхнего и нижнего пределов: 660/380, 380/220 и 220/127 вольт.

Номинал должен совпадать со схемой, по которой выполнено соединение обмоток. Подключение «звезда» объединяет их концы в одной точке, а фазы соединяются с выводами катушек. Здесь используется больший номинал напряжения, отмеченный в маркировке. По схеме «треугольник» выполняется последовательное соединение концов между собой. Образуется полностью замкнутый контур. В данном случае уже используется меньшее значение напряжения. Подключение агрегатов выполняется разными способами, в том числе и смешанным.

Решая, как подключить трехфазный двигатель на 220 вольт, следует помнить, что его нельзя просто взять и подключить к обычной сети. Вал не будет вращаться поскольку отсутствует переменное поле, поочередно воздействующее на ротор. Проблема разрешается путем смещения тока и напряжения в обмотках фаз. Для получения желаемого результата, выполняется подключение двигателя через конденсатор, из-за которого напряжение начинает отставать до минус 90 градусов.

В таких режимах двигатель включается только под нагрузкой, а периоды холостого хода сокращаются до минимума. Несоблюдение правил приведет агрегат к выходу из строя.

Схемы подключения электродвигателя к электропитанию

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит. В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например: — зачем шесть контактов в двигателе? — а почему контактов всего три? — что такое «звезда» и «треугольник»? — а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается? — а как измерить ток в обмотках? — что такое пускатель? и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию. Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В, 2. Трехфазная сеть 220 В (обычно используется на кораблях), 3. Трехфазная сеть 220В/380В, 4. Трехфазная сеть 380В/660В. Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети? Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В. В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий